
Asymmetric Feature Representation for Object
Recognition in Client Server System

Yuji Yamauchi1, Mitsuru Ambai2, Ikuro Sato2, Yuichi Yoshida2,
Hironobu Fujiyoshi1, Takayoshi Yamashita1

1 Chubu University, Japan
2 Denso IT Laboratory, Inc., Japan

Abstract. This paper proposes asymmetric feature representation and
efficient fitting feature spaces for object recognition in client server sys-
tem. We focus on the fact that the server-side has more sufficient mem-
ory and computation power compared to the client-side. Although local
descriptors must be compressed on the client-side due to the narrow
bandwidth of the Internet, feature vector compression on the server-side
is not always necessary. Therefore, we propose asymmetric feature rep-
resentation for descriptor matching. Our method is characterized by the
following three factors. The first is asymmetric feature representation
between client- and server-side. Although the binary hashing function
causes quantization errors due to the computation of the sgn function
(·), which binarizes a real value into {1,−1}, such errors only occur on
the client-side. As a result, performance degradation is suppressed while
the volume of data traffic is reduced. The second is scale optimization
to fit two different feature spaces. The third is fast implementation of
distance computation based on real-vector decomposition. We can com-
pute efficiently the squared Euclidean distance between the binary code
and the real vector. Experimental results revealed that the proposed
method helps reduce data traffic while maintaining the object retrieval
performance of a client server system.

1 Introduction

Advances in object recognition technology and mobile device technology have en-
abled the realization of object recognition applications operating in partnership
with client server systems. In such applications, a user captures the image of an
object with a mobile device and the image or features computed from the image
are then sent to a server. On the server, the image is recognized from its features
and meta-information about the image is returned to the user. Many such sys-
tems operate using local descriptors [1–3], as typified by scale-invariant feature
transform (SIFT) [4], which delivers excellent performance in object recognition.

In practice, extracting local descriptors on a client-side and then sending
them to a server is problematic, since the data size of local descriptors is too
large to transfer through the Internet. For example, the SIFT descriptors is a
128-dimensional vector that consumes 128 bytes when represented as a 1-byte

2 Yuji Yamauchi et al.

Fig. 1. Our system framework in client server system.

unsigned integer array. Since an image has anywhere from a few hundred to a
few thousand SIFT descriptors, the total memory consumption reaches a few
hundred KBytes per image. This has created a need to reduce the volume of
data traffic sent from the client to the server in consideration of network load.

Chandrasekhar et al. suggested that the volume of data traffic can be reduced
by having the client send compressed local descriptors instead of compressed
images [5]. Memory-efficient descriptors have been proposed that represent a
feature as a binary code, a sequence of binary values {−1, 1}1, that can be
compactly stored in main memory. BRIEF [7] and its extensions [8–10] generate
a binary code by using L pixel pairs chosen from inside a nearby region around
a keypoint, which produces an L bits binary sequence. One drawback to these
methods is that they produce relatively longer binary codes with lengths ranging
from 256 to 512 bits.

While these approaches directly compute a binary code by comparing pixel
intensities around a keypoint, binary hashing [11–14, 6, 15] converts a local de-
scriptor represented as a real vector into a much shorter binary code by using
a hashing function. In general, binary representation degrades matching per-
formance along with decreasing bit length. Generating a short yet informative
feature description remains an open problem.

We focus on the fact that the server-side has more sufficient memory and
computation power compared to the client-side. Fig. 1 shows the our framework
of object recognition in client server system. Although local descriptors must be
compressed on the client-side due to the narrow bandwidth of the Internet, fea-
ture vector compression on the server-side is not always necessary. Therefore, we
propose asymmetric feature representation for descriptor matching. Our method
consisted of three factors. The first is asymmetric feature representation between
client- and server-side. The second is scale optimization to fit two different fea-
ture spaces. The third is fast implementation of distance computation based on
real-vector decomposition.

1 In this paper, as with [6], a binary code is expressed by {−1, 1} instead of {0, 1} in
order to simplify the mathematical expressions.

Asymmetric Feature Representation for Object Recognition 3

1.1 Related works

Feature representation Since the SIFT was shown to be effective for key-
point matching, much research has focused on finding ways to reduce the key-
point matching computation time for use on mobile devices. Bay et al. pro-
posed the Speeded-Up Robust Features (SURF) [1], which achieves high-speed
computation by using integral images. Takacs et al. developed the Rotation-
Invariant, Fast Feature (RIFF) descriptor [2] for achieving Mobile Augmented
Reality (MAR) on mobile devices.

On the other hand, global descriptor[16, 17] besides local descriptor also have
been proposed. Global descriptor such as VLAD [17], computational cost is large
because it requires further computation after extracting local descriptor. Fur-
thermore, the approach based on global descriptor, there is a disadvantage that
the adoption of the strategy of improving performance by re-ranking using lo-
cation information of the keypoints is difficult [18]. Therefore, we adopt a local
descriptor at client for transmitting to server, as shown in Fig. 1.

These local descriptors require much memory, in order to represent as a high-
dimensional real vector. Several methods in which local descriptors are extracted
as binary code have been proposed for overcoming these problems [7–10]. These
approaches generate binary code on the basis of the relation between the intensity
of two pixels around each keypoint. One drawback to these methods is that they
produce relatively longer binary codes with lengths ranging from 256 to 512 bits.

While these approaches directly compute a binary code by comparing pixel
intensities around a keypoint, binary hashing [11–14, 6, 15] converts a local de-
scriptor represented as a real vector into a much shorter binary code by using a
hashing function. In this approach, a feature vector x ∈ RD is mapped into short
binary code b ∈ {−1, 1}L by using a binary hashing function b = sgn(f(WTx)),
where D is a dimension, L is the bit length of the binary code, and W ∈ RD×L is
a weight matrix. Weight matrix W and function f(·)2 characterize each binary
hashing. The simplest method proposed is random projection (RP) [11]. f(·) is
an identity function, and the elements in W are sampled from a normal distri-
bution in random projection. The Very Sparse Random Projections (VSRP) [12]
was developed to speed up the calculation. It does this by limiting each element
in W to {−1, 0, 1}. The very supervised sparse hashing (VSSH) [13] improves
performance by introducing the concept of learning to VSRP. The VSSH has
been proposed that learns each element of W. Spectral hashing (SH) [14] uses
principal directions of training data for W and applies a cosine-like function for
f(·). The iterative quantization (ITQ) [6] defines W = WPCAR, where WPCA

is obtained by principal component analysis, and rotation matrix R is optimized
to minimize the quantization error before and after binary code conversion. In
general, binary representation degrades matching performance along with de-
creasing bit length L. Generating a short yet informative feature description
remains an open problem.

2 In many cases [11–13, 6, 19, 15], f(·) is an identity function.

4 Yuji Yamauchi et al.

Domain adaptation Domain adaptation is often used for fitting two or more
feature spaces. Domain adaptation aims to learn classifier using a large number of
samples in the source domain and a small number of samples or classifier in target
domain. In order to achieve this, integrating feature spaces [20], adaptation of
classifier [21][22], and fitting two feature spaces [23][24][25] have been proposed.
The proposed method is related to domain adaptation for fitting two feature
spaces.

Saenko et. al proposed a method for learning metric using Information-
Theoretic Metric Learning (ITML)[26] to form a feature space in consideration
of relationships between different domains [23]. High accuracy object recogni-
tion is achieved by using of k-Nearest Neighbor on the learned feature space.
In addition, it is extended to non-linear mapping to apply the kernel method
[25]. Geng et al. proposed Domain Adaptation Metric Learning (DAML) which
learned a metric in reproducing kernel Hilbert space[24]. A common point of
these methods is to learn a metric while considering the relations of a domains
and the target categories.

The proposed method is also related to methods for fitting two feature spaces.
However, a local descriptor of the same domain is represented by two feature
spaces in the proposed method. The proposed method transforms the local de-
scriptor x ∈ RD to short real vector y ∈ RL, and it is transformed binary code
b ∈ {−1, 1}L by sgn (·) function. We obtain binary code and real vector from a
same local descriptor. Since this is our specific problem, method to solve it has
not been proposed.

1.2 Overview of our approach

In this paper, we focus on the fact that the server-side has more sufficient memory
and computation power compared to the client-side. Although local descriptors
must be compressed on the client-side due to the narrow bandwidth of the In-
ternet, feature vector compression on the server-side is not always necessary.
Therefore, we propose asymmetric feature representation for descriptor match-
ing. Our method is characterized by the following three factors.

1. Asymmetric feature representation
In our approach, local descriptors are computed on the client-side and con-
verted into short binary codes, and the server stores local descriptors as real
vectors. Although the binary hashing function causes quantization errors due
to the computation of the sgn function (·), which binarizes a real value into
{1,−1}, such errors only occur on the client-side. As a result, performance
degradation is suppressed while the volume of data traffic is reduced.

2. Defining distances between binary codes and real vectors
Since the feature space of the real vectors is different from that of the bi-
nary codes, they cannot be directly compared. We propose a simple method
to scale one feature space to fit the other feature space that enables the
computation of distances between such asymmetrically represented features.

Asymmetric Feature Representation for Object Recognition 5

3. Fast implementation for computing distances
It has already been reported that by decomposing a real vector into a few
scholar weight factors and a few binary basis vectors, the Euclidean distance
between the binary code and the real vector can be computed extremely
quickly [27]. We propose a decomposition method based on alternative op-
timization strategies that can approximate the real vector with fewer basis
vectors than [27].

2 Asymmetric representation and distance

This section describes asymmetric feature representation and defining distances
between binary codes and real vectors.

2.1 Euclidean distance between binary code and real vector

The binary hashing consists of two steps. First, an input vector x ∈ RD3 is
converted into a short real vector y ∈ RL by

y = f(WTx). (1)

Second, a binary code b ∈ {−1, 1}L is computed by

b = sgn(f(WTx)). (2)

In our framework, any conventional binary hashing method is available for use.
The f(·) and the W ∈ RD×L follow the definitions of conventional binary hash-
ing methods.

As shown in [6], the sgn(·) function used in the binary hashing can cause
quantization errors that may degrade matching performance. Therefore, in our
approach, while local descriptors computed on the client-side are converted into
short binary codes b, the server stores local descriptors as real vectors y. As
a result, since quantization errors only occur on the client-side, performance
degradation is suppressed while the volume of data traffic is reduced. However,
since each feature space is different, they cannot be directly compared.

2.2 Optimization of adjustment matrix

Since two feature spaces are different, it is necessary to fit the other feature
space that enables the computation of distances between such asymmetrically
represented features. An approach using the domain adaptation [23][24][25] in-
troduced the metric learning for fitting feature spaces in different domains. These
methods proposed introducing metric learning to form a feature space in consid-
eration of relationships between different domains. However, a local descriptor of
3 Before the local features are converted, they are mean-centered by using an average

descriptor which is computed from training samples.

6 Yuji Yamauchi et al.

Fig. 2. Visualization of adjustment matrix (L = 32 bits). The red color means a high
value.

Table 1. Euclidean norm and scale factor in each binary hashing method.

Binary hashing Average Euclidean norm Scale factor

Binry code 5.66 –

RP [11] 4.22 1.09

VSRP [12] 1.32 3.41

SH [14] 2.46 1.86

ITQ [6] 0.65 6.17

the same domain is represented by two feature spaces in the proposed method.
We obtain binary code and real vector from a same local descriptor. Therefore, in
order to minimize the error between real vectors and binary codes, we optimize
the objective function as follows :

J(Q) = ||B − QY||2F , (3)

where B ∈ {−1, 1}L×N is a matrix of binary code corresponding to N keypoints
obtained from training images. The matrix of real vectors Y ∈ RL×N is similar.
Q ∈ RL×L is a adjustment matrix for fitting the two feature spaces. Two feature
spaces can be fitted using optimized adjustment matrix.

Fig. 2 shows example of visualization of optimized adjustment matrix. The
adjustment matrix is very similar to the diagonal matrix, and diagonal elements
have high value. This means that the optimized adjustment matrix can be re-
placed as a scalar matrix. Furthermore, the size of the adjustment matrix Q is a
square of the bit length L of the binary code. If the bit length is greater, there is
a possibility that the matrix becomes over-fit to the training samples. Therefore,
we fit two feature spaces by more simpler way.

Asymmetric Feature Representation for Object Recognition 7

Fig. 3. Effect of optimizing scale factor. D(·, ·) is Euclidean distance.

2.3 Optimization of scale factor

We propose a simple method to scale one feature space to fit the other feature
space and enable the computation of distances between such asymmetrically
represented features. We introduce the optimization of scale factor α to absorb
the scale difference between feature spaces. Optimization is done using a cost
function:

J(α) = ||B − αY||2F , (4)

where B ∈ {−1, 1}L×N is a matrix of binary code b corresponding to N key-
points obtained from training images. The matrix of real vectors Y ∈ RL×N is
a matrix of real vector y.

The Euclidean norms of binary code and real vectors when L is set to 32 are
shown in Table 1 for several binary hashing methods. The Euclidean norm of a
binary code b is a constant value

√
L because the elements of the binary code

only take two integer values {−1, 1}. In contrast, the Euclidean norm of a real
vector depends on the binary hashing method. This difference may significantly
degrade matching performance. Table 1 shows the optimized scale factors for
each binary hashing method. The smaller the Euclidean norm of the real vector,
the larger the scale factor becomes. The effect of the optimization of the scale
factor is shown in Fig. 3. We used the ITQ binary hashing method. Without
optimization (Fig. 3(a)), the distribution of the Euclidean distance between the
binary code and real vectors was biased compared with the distribution of the
Euclidean distance between real vectors. This is because the Euclidean norm of
a real vector is very small compared to that of a binary code. With optimization
(Fig. 3(b)), the Euclidean distances were about the same. For brevity purposes,
yα = αy is used hereafter.

3 Fast computation of Euclidean distance by introducing
decomposition method

This section describes fast computation of Euclidean distance by introducing
decomposition method.

8 Yuji Yamauchi et al.

3.1 Real vector decomposition

In this section, we consider the efficient computation of squared Euclidean dis-
tance between the binary code b and the real vector yα. This computation can
be expanded as

d(b,yα) = ||b − yα||22
= bTb − 2bTyα + yT

αyα. (5)

The first term of Eq. (5) is the dot product between binary codes in the client.
This becomes a constant value because all of the elements in b take only two
values {1,−1}. The third term is the dot product between real vectors stored in
the server that can be calculated in advance. The problem here is computing the
second term: it cannot be calculated in advance, so it requires a large number
of floating-point computations.

To overcome this problem, Hare et al. [27] proposed decomposing the real
vector yα into k weight factors and k binary basis vectors as

yα ≈ Mc, (6)

where c = (c1, c2, · · · , ck)T ∈ Rk is the weight factor and M = {m1,m2, · · · ,mk} ∈
{−1, 1}L×k is the binary matrix composed of k binary basis vectors mi ∈
{−1, 1}k.

Letting Eq. (6) into the second term of Eq. (5), we obtain

bTyα ≈ bTMc

=
k∑

i=1

cibTmi. (7)

The computations bTmi that appeared in Eq. (7) are extremely fast because
this is equivalent to computing the Hamming distance between b and mi, as

bTmi = L − 2HammingDistance(b,mi) (8)

Since the Hamming distance can be computed efficiently using a bitwise XOR
followed by a bit-count, Eq. (7) can also be computed very fast.

Introducing the decomposition method provides one more advantage. The
server only has to store c, M, and yT

αyα instead of yα. This reduces memory
usage in the server substantially.

3.2 Decomposition algorithms

The rest of this section discusses the decomposition algorithms used to obtain
M and c. Hare et al. [27] proposed a greedy algorithm that sequentially deter-
mines pairs of ci and mi one after another. In contrast to this, we propose a
decomposition method based on an alternative optimization strategy that can

Asymmetric Feature Representation for Object Recognition 9

Algorithm 1 Decomposition.
for i = 1 : I do

Set c and M to random values.
for j = 1 : ∞ do

(1) Minimize J(c,M) by fixing M and updating c.
This optimization can be done by least squares method.

(2) Minimize J(c,M) by fixing c and updating M.
This optimization can be done by exhaustive search.

(3) Exit loop if converged.
end for

end for
Select the best c and M that minimize J(c,M).

Fig. 4. Comparison of the proposed method with Hare’s method [27].

approximate yα with fewer weights ci and basis vectors mi than Hare’s greedy
optimization.

In our approach, M and c are determined by minimizing the following cost
function:

J(c,M) = ||yα − Mc||22. (9)

Our decomposition algorithm is shown in Algorithm 1. Since it is difficult to
optimize M and c at the same time, we do so alternately. If the basis vector M
is fixed, the weight factor c can be optimized by using the least squares method.
In contrast, if c is fixed, the basis vector M can be optimized by exhaustive
search. Thanks to the constraint that the binary basis vector M only takes two
integer values {1,−1}, the i th row in the matrix M takes 2k combinations.
Therefore, all of the 2k combinations can be exhaustively tested if k is small
enough. We initialize M and c by random values and alternately update them
until convergence. To avoid falling to a local minimum, several different initial
values are tested.

In contrast to Hare’s method, our method determines k pairs of ci and mi

simultaneously. Therefore, the difference between the two methods appears in
the approximate performance. It is obvious from Fig. 4 that our method can
approximate yα using fewer basis vectors mi than Hare’s method.

10 Yuji Yamauchi et al.

Fig. 5. Example images in dataset.

4 Experiments

We evaluated the performance of the asymmetric feature representation proposed
in this paper by testing to find corresponding points between two images.

4.1 Datasets for evaluating keypoint matching

We evaluate the proposed method on two datasets of the IEEE Spectrum mag-
azine dataset and Mikolajczyk’s dataset [3].

IEEE Spectrum magazine dataset We prepared seven issues of the IEEE
Spectrum magazine and captured them from six viewpoints. Example images
from some various viewpoints are shown in Fig. 5. Let Ii

j denote an image in the
database, with the number of where i is the magazine index (1 ≤ i ≤ 7), and
j is the viewpoint index (1 ≤ j ≤ 6). Assuming that the magazines are planar,
we prepared a homography matrix Hi

1→j between Ii
1 and Ii

j in advance, which
gives ground truth correspondences between the image pairs. We used I1

j ∼ I3
j

for training to compute the weight matrix W, and used I4
j ∼ I7

j for testing.
Keypoint matching performance can be evaluated by using the image pairs

Ii
1, I

i
j , and their homography matrix Hi

1→j . For each keypoint obtained from
the Ii

1, the first and second nearest neighbors were searched from the keypoints
extracted from the Ii

j . Let d1 and d2 denote the distances to the first and second
nearest neighbors, respectively. If the ratio of the distances d1/d2 was less than a
pre-defined threshold T , the query keypoint in Ii

1 and the first nearest neighbor
in Ii

j were regarded as corresponding points. If the first nearest neighbor was
located within

√
(1 + 1) pixels from the true location derived from Hi

1→j , such
keypoint pair is regarded as inlier. We computed the average number of matches
over test image pairs and the rate of correct matching.

Mikolajczyk’s dataset We evaluate the proposed method using the stan-
dard dataset [3] for keypoint matching. Mikolajczyk’s dataset is captured at eight

Asymmetric Feature Representation for Object Recognition 11

places from six viewpoints. We use images from four viewpoints for training to
compute weight matrix W, and used the remaining images for testing.

4.2 Comparing symmetric and asymmetric representation

We compared three kinds of feature representation:

– Binary code vs. Binary code: BC-BC
This is conventional symmetric representation.

– Binary code vs. Real vector: BC-RV without optimizing α
This is the asymmetric representation proposed in this paper. The scaling
factor α is fixed to 1.

– Binary code vs. Real vector: BC-RV with optimizing α
The scaling factor α was optimized by using training samples.

We used SIFT [4] as local descriptors, and we test four binary hashing func-
tions as follow:

– Random Projection (RP) [11]
f(·) was used as the identity function, and elements in W were sampled from
a normal distribution.

– Very Sparse Random Projection (VSRP) [12]
f(·) was used as the identity function, and elements in W were limited to
{−1, 0, 1}, with probability { 1

2
√

(D)
}, 1 − { 1√

(D)
}, { 1

2
√

(D)
}.

– Spectral Hashing (SH) [14]
Basis vectors obtained by principal component analysis were used as W, and
f(·) was used as an eigenfunction.

– Iterative Quantization (ITQ) [6]
ITQ was used to define W = WPCAR, WPCA was obtained by principal
component analysis, and rotation matrix R was optimized to minimize the
quantization error before and after binary code conversion.

The results are shown in Fig. 6. The asymmetric representation with opti-
mizing α clearly outperformed the conventional symmetric representation when
the shorter binary codes were used. This means that the proposed method can
improve matching performance when short binary codes are used to reduce net-
work traffic. The scaling factor α played an important role when ITQ and VSRP
were used as the binary hashing function. In the case of ITQ and VSRP, the
average Euclidean norm of binary codes in the client-side significantly differed
from that of real vectors in the server-side, as shown in Table 1. This means that
the scaling factor α absorbed such difference and contributed to improving the
matching performance.

4.3 Effect of decomposition

We evaluated the effect of decomposition in terms of matching rate, computa-
tional time, and memory usage. In this experiment, random projections were
used as binary hashing methods. Bit length L was set to 32.

12 Yuji Yamauchi et al.

Fig. 6. Comparison with state-of-the-art methods.

Asymmetric Feature Representation for Object Recognition 13

Table 2. Computational time [ns].

Bits BC - BC BC - RV BC - RV
(No Decomposition) (Decomposition)

32 14.2 433.5 54.5

64 27.6 852.3 105.7

128 61.9 1683.2 177.5

Fig. 7. Comparison with Hare’s method [27].

Matching performance The results of a comparison between our decomposi-
tion algorithm and Hare’s method [27] are shown in Fig. 7. When the number of
basis vectors k was set to 1, there was little difference between our algorithm and
Hare’s method. However, when k > 1, the performance of the proposed method
was higher. While Hare’s method needed four basis vectors to sufficiently ap-
proximate the original real vector yα, our algorithm only required three, which
helped reduce the memory usage and computational time of matching.

Computational time We evaluated the computational time of keypoint match-
ing. We used an Intel Xeon CPU 2.27-GHz processor. The number of basis vec-
tors k was set to 3. As shown in Table 2, introducing the decomposition method
drastically reduced the computational time compared to the case without de-
composition: the computation time was eight times faster.

Memory usage We compared memory usage with and without decomposing
yα. The number of basis vectors k was set to 3. Table 3 shows the results. One

14 Yuji Yamauchi et al.

Table 3. Memory usage in server [MB]. (We assume that 1,000 keypoints are detected
from an image.)

No. of keypoints 32 bits 64 bits 128 bits
(No. of images) Dec. No dec. Dec. No dec. Dec. No dec.

0.1M (0.1K) 2.67 12.2 3.8 24.4 6.1 48.8

1 M (1 K) 26.7 122.1 38.1 244.1 61.0 488.3

10 M (10 K) 267.0 1,220.7 381.5 2,441.4 610.4 4,882.8

100 M (100 K) 2,670.3 12,207.0 3,814.7 24,414.1 6,103.5 48,828.1

example shows that if the server stores 100,000 images and the length of the
binary code is set to 32 bits, memory usage is reduced to about 21%.

5 Conclusion

In this paper, we proposed asymmetric feature representation for matching lo-
cal descriptors. Experimental results revealed that the proposed method helps
reduce data traffic while maintaining the object retrieval performance of a client
server system. Our method consisted of three factors. The first was asymmetric
feature representation between client- and server-side. The second was scale op-
timization to fit two different feature spaces. The third was fast implementation
of distance computation based on real-vector decomposition.

The range of application is not limited to object retrieval. We believe our
method can be used not only for computer vision applications but also for similar
applications such as speech recognition systems.

References

1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf).
Computer Vision and Image Understanding 110 (2008) 346–359

2. Takacs, G., Chandrasekhar, V., Tsai, S., Chen, D., Grzeszczuk, R., Girod, B.:
Unified real-time tracking and recognition with rotation-invariant fast features. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
(2010)

3. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis & Machine Intelligence 27 (2005) 1615–1630

4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

5. Chandrasekhar, V., Takacs, G., Reznik, Y., Grzeszczuk, R., Girod, B.: Compressed
histogram of gradients: A low-bitrate descriptor. International Journal of Com-
puter Vision (2011)

6. Gong, Y., Lazebnik, S.: Iterative Quantization : A Procrustean Approach to Learn-
ing Binary Codes. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. (2011)

Asymmetric Feature Representation for Object Recognition 15

7. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF:
Computing a Local Binary Descriptor Very Fast. IEEE Transactions on Pattern
Analysis & Machine Intelligence 34 (2012) 1281–1298

8. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust Invariant Scalable
Keypoints. In: IEEE International Conference on Computer Vision. (2011)

9. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An Efficient Alternative
to SIFT or SURF. In: IEEE International Conference on Computer Vision. (2011)

10. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
(2012)

11. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of Computer and System Sciences 66 (2003) 671–687

12. Li, P., Hastie, T.J., Church, K.W.: Very Sparse Random Projections. In: Interna-
tional Conference on Knowledge discovery and data mining. (2006)

13. Ambai, M., Yoshida, Y.: CARD: Compact And Real-time Descriptors. In: IEEE
International Conference on Computer Vision. (2011) 97–104

14. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Neural Information
Processing Systems. (2008) 1753–1760

15. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.e.: Spherical hashing. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion. (2012)

16. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: In Workshop on Statistical Learning in Computer
Vision, in conjunction European Conference on Computer Vision. (2004)

17. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. (2010) 3304–3311

18. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. (2007)

19. Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Euro-
pean Conference on Computer Vision. (2012)

20. Daume III, H.: Frustratingly easy domain adaptation. In: Annual Meeting of the
Association of Computational Linguistics. (2007) 256–263

21. Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple
sources via auxiliary classifiers. In: Annual International Conference on Machine
Learning. (2009) 289–296

22. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using
adaptive svms. In: International Conference on Multimedia. (2007) 188–197

23. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: European Conference on Computer Vision. (2010) 213–226

24. Geng, B., Tao, D., Xu, C.: Daml : Domain adaptation metric learning. IEEE
Transactions on Image Processing 20 (2011) 2980–2989

25. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. (2011) 1785–1792

26. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: International Conference on Machine Learning. (2007) 209–216

27. Hare, S., Saffari, A., Torr, P.H.S.: Efficient Online Structured Output Learning
for Keypoint-Based Object Tracking. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. (2012) 1894–1901

